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A description is given of an application of the sliding mode control (SMC) for stabilizing the
static and dynamic characteristics of an anti-aircraft missile. The solution provides effective
separation of the control process from the dynamics of the missile airframe. In the equivalent
part of the stabilization system, a linear-quadratic regulator (LQR) is considered, and an
analytical method of selecting the weighting elements of the gain matrix is proposed. This
eliminates the need for an iterative solution of the Riccati equation. A nonlinear switching
component is introduced into the control signal to provide smoothness of the system re-
sponse. In simulation tests, the proposed solution was evaluated against selected quantity
indices. The paper ends with observations and conclusions.
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1. Introduction

Contemporary anti-aircraft missiles offer high maneuverability and continuously improving com-
bat capabilities. During the flight, the physical properties of the missile airframe vary nonlinearly
with time and depend on – among other factors – the missile speed and height of the flight.
Changes in these properties may also be caused by external interference, which means that the
system in question is generally nonstationary and random. In turn, the nonstationary nature of
static and dynamic characteristics of the missile airframe determines the changes in characteri-
stics of the entire guidance loop, which in extreme cases may compromise its stability. This is
a highly undesirable effect, which has a negative impact on the accuracy of missile guidance to
the target. To compensate for the effects of the airframe dynamic characteristics and adverse
flight conditions, an autopilot is installed on board the missile as a stabilizing device (Grycewicz
et al., 1984; Siouris, 2004; Yanushevsky, 2007; Zarchan, 2012).

Over the past decade or more, the sliding mode control (SMC) has gained in importance as
a nonlinear control method which alters the dynamics of the system by means of a discontinuous
control signal. SMC algorithms have already been effectively implemented in models of control
and guidance systems for anti-aircraft missiles (Zhou et al., 1999; Gu et al., 2005; Shima et al.,
2006; Idan et al., 2007; Shtessel and Tournes, 2009).

In the sliding mode controller, the control signal is the sum of the equivalent control and
switching control signals. The equivalent control may be provided using any regulator that is
able to track the set trajectory with specified accuracy. Here, a linear-quadratic regulator (LQR)
will be considered.

The determination of the weighting coefficients of an LQR – algorithmically simple in the
case of linear time-invariant (LTI) systems – becomes more complex when the analyzed system
contains nonlinear and nonstationary features. In such cases, for solving the Riccati equation to
find coefficients of the gain matrix K in the feedback loop, numerical computation methods are
commonly applied to a “frozen” set of coefficients describing the state of the system in a finite
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time horizon, which is made as short as possible. The main difficulty with this approach is the
requirement for computations to be carried out in real time (Çimen, 2008; Siddiq et al., 2013) in
addition to certain complications related to the application of numerical methods (for instance,
bad conditioning of the matrix). It is therefore advantageous to be able to find the form of the
weighting coefficients by analytical methods, which eliminate the need for iterative solution of
the Riccati equation.
An application of the SMC method for stabilizing the static and dynamic characteristics of

an anti-aircraft missile airframe will be presented below. The weighting coefficients of the gain
matrix K of the LQR in the equivalent part are determined here for a linearized system that is
subject to a number of simplifications. This enables a solution to be found in a general form.
To provide required smoothness of the system response, a nonlinear component of the switching
part of the sliding mode controller is introduced into the control signal.
The paper is organized as follows. In Sections 2 and 3, the problem is formulated and a

mathematical model of the dynamics of an anti-aircraft missile airframe is presented. In Section 4,
a solution is proposed for the equivalent and switching parts of the sliding mode controller for
stabilizing static and dynamic characteristics of the airframe for the system in question. Section 5
presents selected results of simulation tests. And the final Section contains observations and
conclusions.

2. Formulation of the problem

When guiding a missile towards a target, it is desirable that

ω ≈ θ̇ (2.1)

namely, that the angular rate ω of the airframe be approximately equal to the angular rate θ̇ of
the missile velocity vector, and not depend on the dynamics of the missile itself (Bużantowicz
and Pietrasieński, 2018; Grycewicz et al., 1984). Hence, a solution is sought which minimizes
the value of the quantity index given in the form of the functional

J =

tf
∫

0

|ω − θ̇| dt (2.2)

where tf is the final time of the guidance process. The value of the integral in Eq. (2.2) depends
on the ability of the system to reduce the effect of components associated with the dynamics of
the missile airframe.

3. Model of the missile airframe dynamics

The missile considered here uses a canard-controlled aerodynamic system and roll angle stabili-
zation. The motion of the missile may be considered independently in the control planes.
The differential equations describing the dynamics of the missile motion in the control plane

are derived for the scheme shown in Fig. 1. The equation of motion relative to an axis normal
to the velocity vector V is obtained by projecting the forces acting on the missile onto that axis

mV θ̇ = T sinα+
ρV 2

2
ScL(Ma, α) +

ρV 2

2
ScC(Ma, α, δ) (3.1)

where T is the thrust, m is mass of the missile, V = |V| is the missile velocity, Ma is the
Mach number, α is the airframe angle of attack, δ is the angle of deflection of the canards, ρ is
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Fig. 1. Angular relationships assumed for the missile in the control plane

atmospheric density, S is the characteristic surface, and cL and cC are aerodynamic coefficients
of the airframe and canards. Assuming that the gravitational force acting on the airframe is
treated as an external disturbation compensated by a component added to the control signal,
Eq. (3.1) may be used to describe the missile dynamics in both the yaw and pitch planes.
The equation of rotational motion is obtained by balancing the moments of forces acting on

the missile

Iω̇ = −ρV
2

2
SlcαM (Ma, α) −

ρV

2
Sl2cωM (Ma, ω) +

ρV 2

2
SlcδM (Ma, α, δ) (3.2)

where I is the airframe moment of inertia, ω is the airframe angular rate, l is the characteristic

linear dimension, and c
(·)
M are in general coefficients of aerodynamic moments, particularly, c

ω
M is

the damping coefficient, cαM is the stabilizing coefficient of the airframe and c
δ
M is the control

coefficient.
For airframe controller design purposes, taking the coefficients of aerodynamic forces and

moments to be linearly dependent on the variables α, ω and δ, and linearizing the sine function
for small values of the angle of attack, a linearized system of equations is obtained to describe
the dynamics of the missile airframe in the control plane

θ̇ =
{ρV

2m
S[cL(Ma) + cC(Ma)] +

T

mV

}

α+
ρV

2m
ScC(Ma)δ

ω̇ = −
{ρV 2

2I
Sl[cαM (Ma)− cδM (Ma)]

}

α− ρV
2I
Sl2cωM (Ma)ω +

ρV 2

2I
SlcδM (Ma)δ

(3.3)

Introducing the following notations

a1 =
ρV

2m
S[cL(Ma) + cC(Ma)] +

T

mV
a2 =

ρV 2

2I
Sl[cαM (Ma)− cδM (Ma)]

a3 =
ρV

2I
Sl2cωM (Ma) b1 =

ρV

2m
ScC(Ma) b2 =

ρV 2

2I
SlcδM (Ma)

(3.4)

the system of equations (3.3) takes the form

θ̇ = a1α+ b1δ ω̇ = −a2α− a3ω + b2δ (3.5)

Equations in (3.5) are supplemented by the following relationships

ϑ =

∫

ω dt a = V θ̇ α = ϑ− θ (3.6)

where ϑ is the pitch (yaw) angle of the airframe and a is the normal acceleration in the control
plane, and by the equation modelling the operation of the fin actuators

δ̇ =
δc − δ
τ

(3.7)



172 W. Bużantowicz

where δc is the commanded canard deflection angle, δ is the current canard deflection angle, and
τ is the time constant of servos.

4. Design of the stabilization system

The control signal κsmc is the sum of the signals of the equivalent control κeq and switching
control κsw

κsmc = κeq + κsw (4.1)

Synthesis of the switching control is associated with the design of a stable sliding surface σ,
while synthesis of the equivalent control involves design of a control process which will bring the
states of the system onto a selected sliding surface in a finite time.
For the provision of equivalent control, a linear-quadratic regulator (LQR) is selected. For

synthesis of its parameters, the linearized model of the missile motion described by the system
of equations (3.5) is used. Noting that

α = ϑ− θ → α̇ = ϑ̇− θ̇ = ω − θ̇ (4.2)

we obtain the following equivalent form of the system of equations (3.5)

α̇ = −a1α+ ω − b1δ ω̇ = −a2α− a3ω + b2δ (4.3)

Switching to vector-matrix notation, we have

[

α̇

ω̇

]

=

[

−a1 1
−a2 −a3

] [

α

ω

]

+

[

−b1
b2

]

δ ωout =
[

0 1
]

[

α

ω

]

+ [0]δ (4.4)

or more concisely

ẋ = Ax+Bδ y = Cx+Dδ (4.5)

To simplify further considerations, the inertia of the fin actuator is ignored in the equivalent
part of the stabilization system; that is, it is assumed that κ = δc = δ.
The regulator settings are determined based on the linear dynamic equations and a quadratic

cost function in the form

JLQ =

∞
∫

0

[xT(t)Qx(t) + κT(t)Rκ(t)] dt (4.6)

where Q = QT and R = RT are weighting parameters for the state variable signals and the
control signals. The values of these parameters are selected arbitrarily.
To determine the gain matrix K of the equivalent part

κeq = Nκ−Kx = Nκ−R−1BTPx (4.7)

where N is the scaling factor of the input signal κ, it is necessary to find the matrix P satisfying
the Riccati equation

ATP+PA−PBR−1BTP+Q = 0 (4.8)

In the general case, it is not possible to determine the entries of P analytically (Çimen, 2008).
However, in certain situations, their form can be obtained, and this makes it possible to define
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an adaptable feedback from the time-variable state of the system. We take the matrices P, Q
and R to be

P =

[

p11 p12
p21 p22

]

Q =

[

q1 0
0 q2

]

R = [r] (4.9)

hence the gain matrix K takes the form

K =
1

r

[

−b1 b2
]

[

p11 p12
p21 p22

]

=
1

r

[

−b1p11 + b2p21 −b1p12 + b2p22
]

(4.10)

The expanded form of Eq. (4.8) is as follows
[

−a1 −a2
1 −a3

] [

p11 p12
p21 p22

]

+

[

p11 p12
p21 p22

] [

−a1 1
−a2 −a3

]

−
{[

p11 p12
p21 p22

] [

−b1
b2

]}

1

r

{

[

−b1 b2
]

[

p11 p12
p21 p22

]}

+

[

q1 0
0 q2

]

=

[

0 0
0 0

] (4.11)

and
[

−a1p11 − a2p21 −a1p12 − a2p22
p11 − a3p21 p12 − a3p22

]

+

[

−a1p11 − a2p12 p11 − a3p12
−a1p21 − a2p22 p21 − a3p22

]

− 1
r

[

b21p
2
11−b1b2p11p12−b1b2p11p21+b22p12p21 b21p11p12−b1b2p11p22−b1b2p212+b22p12p22

b21p11p21−b1b2p221−b1b2p11p22+b22p21p22 b21p12p21−b1b2p21p22−b1b2p12p22+b22p222

]

+

[

q1 0
0 q2

]

=

[

0 0
0 0

]

(4.12)

As the lift on the airframe and wings in fin-controlled missiles is many times greater than the
lift on the fins (Grycewicz et al., 1984), it may be assumed without introducing a significant
error that

a1 ≫ b1 → b1 = 0 (4.13)

In this case, Eq. (4.12) reduces to the form
[

−a1p11 − a2p21 −a1p12 − a2p22
p11 − a3p21 p12 − a3p22

]

+

[

−a1p11 − a2p12 p11 − a3p12
−a1p21 − a2p22 p21 − a3p22

]

− b
2
2

r

[

p12p21 p12p22
p21p22 p22p22

]

+

[

q1 0
0 q2

]

=

[

0 0
0 0

] (4.14)

and the gain matrix K is equal to

K =
1

r

[

0 b2
]

[

p11 p12
p21 p22

]

=
b2

r

[

p21 p22

]

(4.15)

This means that to determine the settings of the LQR it is sufficient to find just two of the four
entries of the matrix P.
By summation of the matrices in Eq. (4.14), and comparison of the corresponding terms and

rearrangement, the following system of equations is obtained

− 2a1p11 − a2p12 − a2p21 + q1 =
b22
r
p12p21 p11 − (a1 + a3)p12 − a2p22 =

b22
r
p12p22

p11 − (a1 + a3)p21 − a2p22 =
b22
r
p21p22 p12 + p21 − 2a3p22 + q2 =

b22
r
p22p22

(4.16)
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From the second and third equations in (4.16), we have

(p21 − p12)
(

a1 + a3 +
b22
r
p22

)

= 0 → p12 ≡ p21 (4.17)

Thus, the system of equations (4.16) simplifies to

− 2a1p11 − 2a2p21 + q1 =
b22
r
p21p21 p11 − (a1 + a3)p21 − a2p22 =

b22
r
p21p22

2p21 − 2a3p22 + q2 =
b22
r
p22p22

(4.18)

Multiplying both sides of the second equation in (4.18) by 2, and summing the equations in
(4.18), we obtain

2r

b22
(1−a1)p11+

2r

b22
(1−a1−a2−a3)p21+

2r

b22
(−a2−a3)p22 = (p21+p22)2−

r

b22
(q1+ q2) (4.19)

Assuming that

(p21 + p22)
2 − r
b22
(q1 + q2) = 0 (4.20)

and choosing r, q1 and q2 such that (Erdem and Alleyne, 2004; Çimen, 2008)

r > 0, q > 0 ∧ q = q1 = q2 (4.21)

we have

(p21 + p22)
2 =
2r

b22
q (4.22)

Because r > 0 and q > 0, it follows that

p21 + p22 = ±
√

2r

b22
q (4.23)

The expression under the root sign in (4.23) is real and positive, and thus has a square root
in the set of positive real numbers. Assuming additionally r = 2q, two possible solutions are
obtained

p21 =
r

b2
− p22 p21 = −

r

b2
− p22 (4.24)

Solving the first equation in (4.18) with respect to p21 is inconvenient because of the complex
substitution for the entry p11

p11 =
b22
r
p21p22 + (a1 + a3)p21 + a2p22 (4.25)

however, after some transformations, by Eq. (4.15), four pairs of entries for the matrix K can
be obtained

k1 = −
1

b2(1− 2a1)
[a1(a1 − a2 + a3 + b2) + a2 ±

√

Ψ1]

k2 = 1 +
1

b2(1− 2a1)
[a1(a1 − a2 + a3 + b2) + a2 ±

√

Ψ1]

(4.26)
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and

k1 = −
1

b2(1− 2a1)
[a1(a1 − a2 + a3 − b2) + a2 ±

√

Ψ2]

k2 = −1 +
1

b2(1− 2a1)
[a1(a1 − a2 + a3 − b2) + a2 ±

√

Ψ2]

(4.27)

where Ψ1 and Ψ2 are given as follows

Ψ1 = (a1b2 + a2)
2 + [a1(a1 + a3)− a1a2]2 + 2(a1 − a2 + a3)(a21b2 + a1a2)

+
(1

2
− a1
)

(b22 − 4a1a2b2)

Ψ2 = (a1b2 − a2)2 + [a1(a1 + a3)− a1a2]2 − 2(a1 − a2 + a3)(a21b2 − a1a2)

+
(1

2
− a1
)

(b22 + 4a1a2b2)

(4.28)

Solving the third equation in (4.18) with respect to p22 for the cases given by Eq. (4.24), and
substituting the achieved results to Eq. (4.15), we obtain four other pairs of entries for the
matrix K

k1 = 1 +
1

b2

[

(a3 + 1)∓
√

a23 + 2a3 +
1

2
b22 + 2b2 + 1

]

k2 = −
1

b2

[

(a3 + 1)±
√

a23 + 2a3 +
1

2
b22 + 2b2 + 1

]

(4.29)

and

k1 = −1 +
1

b2

[

(a3 + 1)∓
√

a23 + 2a3 +
1

2
b22 − 2b2 + 1

]

k2 = −
1

b2

[

(a3 + 1)±
√

a23 + 2a3 +
1

2
b22 − 2b2 + 1

]

(4.30)

The three pairs of those defined in (4.26), (4.27) and (4.29), (4.30) give unstable solutions
(with positive feedback), and the other four lead to inappropriate quality of the system response
(Fig. 2a). These solutions should be rejected. Based on the analysis of the angular rate ω obtained
as step responses of the airframe to the commanded fin deflections, in our further considerations
the gain matrix K will be taken to have the form

K =

[

k1
k2

]T

=









− 1

b2(1− 2a1)
[a1(a1 − a2 + a3 − b2) + a2 +

√
Ψ ]

−1 + 1

b2(1− 2a1)
[a1(a1 − a2 + a3 − b2) + a2 +

√
Ψ ]









T

(4.31)

with Ψ = Ψ2 as it is defined by Eq. (4.28)2.
The full-state feedback system does not compare the output to the reference. Instead, it

compares the state vector x multiplied by the gain matrix K to the reference. To obtain the
desired output, we need to scale the reference input so that the output equals the reference. The
feed-forwarding scaling factor of the input signal is taken to be

N = Nκ +KNx (4.32)

where

[

Nx
Nκ

]

= Ω−1
[

0

ζ

]

Ω =

[

A B

C D

]

=







−a1 1 −b1
−a2 −a3 b2
0 1 0






(4.33)
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Fig. 2. Angular rates of the airframe with the LQR stabilization system for the derived pairs of entries
of the gain matrix K (a) and angular rates of the unstabilized airframe and of the airframe having a
stabilization system with the chosen linear-quadratic regulator (b), obtained as step responses for the

commanded fin deflections

and ζ is the factor required to compensate the steady-state error

ζ =
a1b2 + a2b1
a1a3 + a2

(4.34)

calculated for t = 0 and treated as a constant value in a finite time horizon.
The determinant of the matrix Ω is non-zero

detΩ = a1b2 + a2b1 (4.35)

which ensures the existence of an inverse matrix. The inverse matrix Ω−1 is given by

Ω−1 =
1

detΩ
(ΩD)

T =













−b2
a1b2 + a2b1

−b1
a1b2 + a2b1

−a3b1 + b2
a1b2 + a2b1

0 0 1
−a2

a1b2 + a2b1

a1

a1b2 + a2b1

a1a3 + a2
a1b2 + a2b1













(4.36)

Now

Nx =





ζ
(−a3b1 + b2
a1b2 + a2b1

)

ζ



 Nκ = ζ
( a1a3 + a2
a1b2 + a2b1

)

(4.37)

and by Eqs. (4.31) and (4.32), the scaling factor of the input signal κ takes the form

N =
ζ

a1b2 + a2b1
[a1a3 + a2 + k1(−a3b1 + b2) + k2(a1b2 + a2b1)] (4.38)

while the control law of the equivalent part of the stabilization system is given by

κeq = Nκ− k1α− k2ω (4.39)

Figure 2b presents angular rate histories for both the unstabilized airframe and the airframe
with a stabilization system composed exclusively of the equivalent part with the LQR.
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In the design of the switching part of the stabilization system, it is assumed that the derivative
of the angular rate of the airframe is conditioned by some function f of ω and by the control
signal κ

ω̇ = f(ω) + κ (4.40)

where at any selected time instant only an estimate ωe of the missile angular rate ω is known.
Hence

f(ω)− f(ωe) = ε (4.41)

In the ideal case, the difference ε is equal to zero. It is assumed, moreover, that the difference
between the values of f(ω) and f(ωe) is bounded

|f(ω)− f(ωe)| ¬ εmax (4.42)

Taking the above into account, the sliding surface σ = 0 is defined using the variable

σ = ζ−1ω − κ (4.43)

where ζ > 0 is a constant defined by Eq. (4.34). The Lyapunov function candidate has the form

ℓ =
1

2
σ2 (4.44)

and its time derivative is

ℓ̇ = σσ̇ = σ(ζ−1ω̇ − κ̇) (4.45)

Because

σ̇ = ζ−1ω̇ − κ̇ = ζ−1[f(ω) + κ]− κ̇ (4.46)

assuming that

κ̇ = ζ−1[f(ωe) + κeq] f(ω) = f(ωe) σ̇ = 0 (4.47)

the control law is defined as having the form

κ = κeq − k3 sgn (σ) (4.48)

where κeq is the signal of the equivalent part. For the case under consideration

ℓ̇ = σσ̇ = σ(ζ−1ω̇ − κ̇) = σ{ζ−1[f(ω) + κ]− κ̇} (4.49)

which, by Eqs. (4.47) and (4.48), gives

ℓ̇ = ζ−1σ[f(ω) + κeq − k3 sgn (σ)− f(ωe)− κeq]
ℓ̇ = −ζ−1σ[k3 sgn (σ)− εmax] ℓ̇ = −ζ−1|σ|(k3 − εmax)

(4.50)

The assumption

k3 > εmax (4.51)

causes the function ℓ to be negative, which ensures that the state σ = 0 will be reached in a
finite time. To ensure the stability of the switching control based on the Lyapunov theorem, the
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chattering effect for the discontinuous function in Eq. (4.48) has been reduced by replacement
with the hyperbolic tangent function

κsw = −k3 tanh
σ

ξ
(4.52)

where ξ = 2 is the boundary layer thickness, and k3 = 0.25 is the gain factor of the switching
part. The values of the parameters ξ and k3 are chosen experimentally.
By Eqs. (4.39) and (4.52), in Eq. (4.1) the control signal for the developed algorithm finally

takes the form

κsmc = Nκ− k1α− k2ω − k3 tanh
(ζ−1ω − κ

ξ

)

(4.53)

5. Performance analysis

The designed stabilization system has been evaluated against the quantity indices defined based
on the step responses: of the regulation time treg measured according to the angular rate ω for
accuracy ranges ∆ equal to 2% and 5%, and of the steady-state error εreg. In addition, based on
a series of the recorded values for the airframe angular rate ω, the angular rate θ̇ of the velocity
vector V and the canard deflection angle δ were determined for the following quantity indices

JΩ =

tf
∫

0

|ω − θ̇| dt J∆ =

tf
∫

0

|δ̇| dt (5.1)

where tf is the final time of the simulation.
It is assumed that the missile has no thrust during the tests. The following parameters

were assumed in the simulations: m = 100 kg, I = 35 kg·m2, S = 0.67m2, l = 1.36m,
τ = 0.01 s, |δ| ¬ 0.35 rad. Values of geometrical and mass coefficients and of aerodynamic
forces and moments required for Eqs. (3.4) were determined analytically (Kurow and Dołżanski,
1964). For the derivation of approximating differential equations for the elements of the studied
systems, the fourth-order Runge-Kutta numerical integration method was used.

Scenario 1. Figures 3 and 4 and Table 1 give the results obtained from a simulation test
of a stabilization system with constant coefficients a1 = 5 s

−1, a2 = 2350 s
−2, a3 = 10 s

−1,
b1 = 0.4 s

−1, b2 = 420 s
−2 and flight velocity V = 950m/s. The step response of the missile

airframe was investigated for three cases: a) unstabilized airframe; b) airframe with the LQR
stabilization system; and c) airframe stabilized using the SMC system. The time of the simulation
was tf = 1 s (for visualization purposes, the time axis in Figs. 3 and 4 is limited to 0.5 s).

Table 1. Values of control quantity indices

Airframe εreg [%]
treg [s] JΩ [–] J∆ [–]∆ = 2% ∆ = 5%

Unstabilized – 0.76 0.64 1.995e3 2.955e3

LQR 0 0.16 0.15 0.541e3 3.536e3

SMC 0 0.20 0.16 0.520e3 4.336e3

The regulation time is reduced by three-quarters for both the LQR and the SMC stabilization
system, and for both, the steady-state error εreg is equal to zero. The lowest value of the quantity
index JΩ was achieved for the SMC system, which confirms the ability of that system to limit
effectively the impact exerted on the control process by factors related to the dynamics of the
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Fig. 3. (a)Angular rates of the airframe. (b) Airframe angles of attack

Fig. 4. (a) Normal accelerations of the airframe. (b) Canard deflection angles

missile airframe. However, as expected, the quantity index J∆ took a higher value for the SMC
system than for the LQR, which means that the use of the SMC algorithm in the autopilot is
energetically exhausting, as it requires more energy to be delivered to the actuators (the energy
cost is directly related to the change in the canard deflection angle, namely to its derivative δ̇).

Scenario 2. The results of simulation tests for time-variable coefficients (Fig. 5) are presented
in Figs. 6-10 and Table 2. As above, the step response of the missile airframe was investigated
for three cases: a) unstabilized airframe; b) airframe with the LQR stabilization system; and
c) airframe stabilized by the SMC system. The simulation time was tf = 2 s.

The results obtained for variable coefficients reflect the essence of the operation of the sta-
bilization system the fundamental task of which is to make the value of the output signal
independent of the dynamic characteristics of the airframe. This is illustrated by the series of
angular rate values shown in Figs. 6 and 7. In the case of the unstabilized airframe, the changes
in the values of the parameters describing the dynamics of the missile cause the angular rate ω
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Fig. 5. Changes in the coefficients of Eq. (3.5)

Fig. 6. Angular rates of the airframe

Fig. 7. Details of changes in the angular rates of the airframe

Fig. 8. Airframe angles of attack
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Fig. 9. Normal accelerations of the airframe

Fig. 10. Canard deflection angles

Table 2. Values of control quantity indices

Airframe JΩ [–] J∆ [–]

Unstabilized 2.015e3 2.955e3

LQR 0.645e3 3.945e3

SMC 0.611e3 4.768e3

to decrease over time, in spite of the fact that the control signal κ at the input to the system
remains constant. The LQR and SMC stabilization systems aim to maintain a constant angular
rate ω, proportionally to the applied input signal κ through manipulation of the canard deflec-
tion angle δ subject to the limitation imposed by the maximum deflection angle (Fig. 10). The
stabilization system with a sliding mode controller is found to do this more effectively (Figs. 6
and 7), leading to the stabilization of changes in the angle of attack and normal acceleration
of the airframe (Figs. 8 and 9). The drops in the airframe accelerations observed in Fig. 9 are
related to a decrease over time in the velocity of the missile, caused by the drag force.

6. Conclusions

The SMC algorithm presented here is designed for implementation in systems for stabilizing
static and dynamic characteristics of missiles – anti-aircraft missiles in particular. The algo-
rithm effectively determines the input signal and provides effective separation from the dynamic
characteristics of the airframe, which vary to a large degree during the flight.

It is possible to implement the algorithm in practice. To do so, one requires knowledge of the
airframe angular rate ω and the angle of attack α. The current angular rate in the control plane
is supplied by a rate gyroscope. The angle of attack may be determined directly or indirectly:
directly, by using an on-board instrument for measuring the angle of attack; indirectly, by means
of Eq. (4.2) where the current pitch angle of the airframe ϑ is supplied by a free gyroscope,
whereas the pitch angle of the velocity vector θ is obtained by integrating, with respect to time,
the expression
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θ̇ =
a

V
(6.1)

where a is the acceleration normal to the velocity vector V, and V is the modulus of that vector.
The required values are obtained from accelerometers relative to the appropriate axes. Clearly,
both approaches give rise to certain technical and implementation problems. Discussion of these
issues is, however, beyond the scope of this paper. The results of the tests indicate that the use
of the proposed stabilization system with the SMC algorithm in the autopilot of an anti-aircraft
missile would improve the quality of control by stabilizing the angular rate of the airframe.
The system transitional processes would also become shorter and smoother, leading to better
operating conditions for the seeker installed in the missile and more effective guidance towards
an aerial target.
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